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Abstract
We study the spectrum of asymptotic states in the spin-chain description of
planar N = 4 SUSY Yang–Mills. In addition to elementary magnons, the
asymptotic spectrum includes an infinite tower of multi-magnon bound states
with an exact dispersion relation

� − J1 =
√

Q2 +
λ

π2
sin2

(p

2

)
,

where the positive integer Q is the number of constituent magnons. These
states account precisely for the known poles in the exact S-matrix. Like the
elementary magnon, they transform in small representations of supersymmetry
and are present for all values of the ’t Hooft coupling. At strong coupling we
identify the dual states in semiclassical string theory.

PACS numbers: 11.15.−q, 11.25.−w, 11.55.−m

The AdS/CFT correspondence relates the spectrum of free string theory on AdS5 × S5 to
the spectrum of operator dimensions in planar N = 4 SUSY Yang–Mills. Determining this
spectrum is an interesting open problem. Starting from the gauge theory side, the problem has
an elegant reformulation in terms of an integrable spin chain [1, 2] which is diagonalized by
the Bethe ansatz (for reviews see [5]). Similar integrable structures have also been found in
the semiclassical limit of the dual string theory [3] (see also [4]). In recent work, Hofman and
Maldacena (HM) [6] have emphasized the importance of a particular limit where the spectrum
simplifies on both sides of the correspondence (for earlier work on this limit see [7, 8]). In
this limit both the spin chain and the dual string effectively become very long. The dynamics
can then be analysed in terms of asymptotic states and their scattering.

Like the plane-wave limit [9], the HM limit focuses on operators of large R charge J1

and scaling dimension � with the difference � − J1 held fixed. The new feature is that the
J1,� → ∞ limit is taken with the ’t Hooft coupling λ = g2N held fixed. On both sides of
the correspondence the HM limit is characterized by an SU(2|2) × SU(2|2) supersymmetry
with a novel central extension [13] whose generators act linearly on the worldsheet/spin-
chain excitations. The spectrum consists of elementary excitations known as magnons which
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propagate with conserved momentum p on the infinite chain. These states are in short
representations of the supersymmetry which essentially determines their dispersion relation
as1 [10–13] (see also [14])

� − J1 =
√

1 +
λ

π2
sin2

(p

2

)
. (1)

The magnon multiplets undergo dispersionless two-body scattering with an S-matrix which
is also uniquely determined by the SU(2|2) × SU(2|2) supersymmetry up to an overall
phase [13].

In any scattering theory an important possibility is that elementary excitations can form
bound states. Each such object is a new asymptotic state of the theory with its own dispersion
relation and S-matrix. Indeed the complete spectrum of the theory in the HM limit simply
consists of all possible free multiparticle states including arbitrary numbers of each species
of bound state. In this paper we will identify an infinite tower of bound states in the SU(2)

subsector of the theory. States in this sector are characterized by a second conserved global
charge J2 under which the elementary magnon has charge one. Our proposal is that the full
spectrum in the HM limit includes a Q-magnon bound state, for each positive integer Q, with
charge J2 = Q and an exact dispersion relation

� − J1 =
√

Q2 +
λ

π2
sin2

(p

2

)
. (2)

In the context of the full theory we believe that these states should give rise to similar
small representations of supersymmetry as the elementary magnon. In this context magnon
boundstates must form complete multiplets the SO(4) subgroup of the R-symmetry preserved
by the groundstate of the spin chain. The charge J2 corresponds to one of the Cartan generators
of this group. Unlike the bound states discussed in [6], they are absolutely stable (for non-zero
momentum) and exist for all values of the ’t Hooft coupling. The occurrence of an infinite
tower of BPS bound states is reminiscent of many related phenomena in string theory and
supersymmetric field theory.

In the rest of the paper we will present evidence for the existence of these states both
in gauge theory and in string theory. For λ � 1, our proposal reproduces the well-known
spectrum of the Heisenberg spin chain in its thermodynamic limit. For λ � 1 we will identify
bound states of large Q in semiclassical string theory by taking an appropriate limit of the
two-spin-folded string solution of [21, 22]. However, the most important piece of evidence
is valid for all values of λ: the Q = 2 bound state with dispersion relation (2) accounts
precisely for the known pole in the exact two-body S-matrix of [13, 12]. In the full theory,
the pole in question has a non-trivial matrix structure and is therefore associated with the
piece of the S-matrix which is uniquely determined by the supersymmetries. This fits well
with the fact that the corresponding bound states are BPS and their dispersion relation is also
uniquely determined by SUSY. We will also identify the singularity in the Q-body S-matrix
corresponding to the Q-magnon bound state.

As in integrable relativistic field theories in two dimensions [15], it seems that the bound-
state spectrum and its dispersion relation places strong constraints on scattering. Further
investigation of the spectrum may be useful in resolving the remaining ambiguities in the
S-matrix. In particular the non-BPS bound states discussed in [6] should appear as poles in
the as yet undetermined overall phase of the S-matrix.

1 More precisely supersymmetry would allow an arbitrary function of λ to multiply the second term in the square
root. However the simple λ dependence shown reproduces all known results both at weak and strong coupling.
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We begin by briefly reviewing the spin-chain description of the N = 4 theory [1]. The
SU(2) sector of N = 4 SUSY Yang–Mills consists of operators of the form

O ∼ Tr
[
�

J1
1 �

J2
2

]
+ · · · ,

where �1 and �2 are two of the three complex adjoint scalars of the theory. The dots denote
all possible orderings of the fields. Each operator in this sector is characterized by two integer-
valued charges J1 and J2 corresponding to a U(1)×U(1) subgroup of the SU(4) R-symmetry
group. As usual we will focus on the planar theory obtained by taking the N → ∞ limit of
the SU(N) theory with the ’t Hooft coupling λ = g2N held fixed.

At one loop, the dilatation operator of the theory (in the SU(2) sector) can be mapped
onto the Hamiltonian of the Heisenberg spin chain [1]. The spectrum of scaling dimensions
can then be determined by diagonalizing the Heisenberg Hamiltonian. More precisely, at one
loop, the scaling dimension � of an operator is related to the energy E of the corresponding
eigenstate of the spin chain as

� = L +
λ

8π2
E. (3)

States of the spin chain with charges J1 and J2 have J2 flipped spins in a periodic chain of
length L = J1 + J2. Eigenstates with a single flipped spin are known as magnons. Magnons
have conserved energy ε and momentum p related by the dispersion relation

ε(p) = 4 sin2
(p

2

)
. (4)

Eigenstates in the sector with M flipped spins are formed as linear superpositions of M
magnons. They are characterized by M individually conserved momenta pk for k = 1, . . . ,M

and have total energy

E =
M∑

k=1

ε(pk) =
M∑

k=1

4 sin2
(pk

2

)
. (5)

The problem of finding the energy levels is then reduced to determining the allowed values of
the momenta pk . These are determined by the Bethe ansatz equations

exp(iLpk) =
∏
j �=k

S(pk, pj ),

M∑
k=1

pk = 0 (6)

for k = 1, . . . , m. Here S is the two-particle S-matrix which is given as

S(pk, pj ) = ϕ(pk) − ϕ(pj ) + i

ϕ(pk) − ϕ(pj ) − i
(7)

in terms of the phase function ϕ(p) = cot(p/2)/2.
Following [6], we now take the limit L → ∞ with M fixed, where we also hold fixed the

momenta pk of individual magnons. This is just the standard thermodynamic limit of the spin
chain (see e.g. [16, 17]). As above we will refer to this as the HM limit. It is to be contrasted
both with the plane-wave or BMN limit and the limits appropriate for studying spinning strings
where the momenta pk go to zero with pkL fixed.

The key feature of the HM limit is that, as the chain becomes very long, the magnons
become dilute. Thus individual magnons propagate over many sites of the chain between
interactions and can be thought of as asymptotic states. The asymptotic states undergo
dispersionless two-body scattering with the S-matrix defined above. In general we may expect
that as well as undergoing scattering, magnons can form bound states. Roughly speaking, a
Q-magnon bound state corresponds to a state of the spin chain with Q flipped spins where
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the wavefunction is strongly peaked on configurations where all the flipped spins are nearly
adjacent in the chain. In the thermodynamic limit where the chain length becomes infinite this
notion becomes more precise and a bound state can be defined by demanding a normalizable
wavefunction in the usual way. Each bound state should then be included as a new asymptotic
state of the scattering theory with its own S-matrix and dispersion law.

For the Heisenberg spin chain, the spectrum of magnon bound states in the thermodynamic
limit is well known (see section 5 of [17]). There is a single bound state of Q magnons, for
each positive integer Q � L/2 with the dispersion relation

εQ(p) = 4

Q
sin2

(p

2

)
. (8)

As we are taking an L → ∞ limit, this is effectively an infinite tower.
The recipe for finding these bound states is very simple: two-magnon bound states

correspond to poles in the two-body S-matrix (7) [17]. In particular, we find such a pole in
S(p1, p2) when

ϕ(p1) − ϕ(p2) = 1

2
cot

(p1

2

)
− 1

2
cot

(p2

2

)
= i (9)

which corresponds to a bound state2 with U(1) charge J2 = Q = 2 and momentum
p = p1 + p2. We solve these conditions by setting [16, 17]

p1 = p

2
+ iv p2 = p

2
− iv

in (9) which yields cos(p/2) = exp(v). This yields a state with energy

E = ε(p1) + ε(p2) = 4 sin2
(p

4
+ i

v

2

)
+ 4 sin2

(p

4
− i

v

2

)
= 2 sin2

(p

2

)
= ε2(p). (10)

Thus the position of the pole uniquely fixes the dispersion relation of the bound state.
The existence of the higher bound states with Q > 2, and their dispersion relation (8), can

be inferred from singularities in the multi-particle S-matrix. For any integrable spin chain, this
is given by a product of two-body factors. The corresponding pole appears when the momenta
of the Q constituent magnons satisfy [17, 18]

ϕ(pj ) − ϕ(pj+1) = i (11)

for j = 1, 2, . . . ,Q − 1. This condition is easily solved and leads directly to the bound-state
dispersion relation (8).

So far we have only discussed the spectrum of the theory at one loop and only in the
SU(2) sector. However, assuming integrability and the spin-chain description persists in the
full quantum theory, supersymmetry yields powerful constraints on the magnon dispersion
relation and the two-body S-matrix [13]. These constraints provide confirmation for an earlier
proposal [19] for an exact Bethe ansatz in the SU(2) sector. As before the energy of an
M-magnon state is the sum of the energies of individual magnons. However, the new ansatz
incorporates the exact magnon dispersion relation

ε(p) = 8π2

λ

[√
1 +

λ

π2
sin2

(p

2

)
− 1

]
(12)

which, because of (3), is equivalent to (1). The two-body S-matrix which enters in the Bethe
ansatz equations (6) now takes the form

S(pk, pj ) = ϕ(pk) − ϕ(pj ) + i

ϕ(pk) − ϕ(pj ) − i
× SD(pk, pj ), (13)

2 This state was also discussed briefly in [6].
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where the phase function ϕ(p) is now corrected to

ϕ(p) = 1

2
cot

(p

2

) √
1 +

λ

π2
sin2

(p

2

)
. (14)

The first factor in (13) originates in the all-loop gauge theory ansatz of [10]. It also appears
in the SU(2) subsector of the full SU(2|2) × SU(2|2) S-matrix3 of [11–13]. In contrast, SD

is a ‘dressing factor’ which is related to the undetermined overall phase of the full S-matrix.
A formula for SD was conjectured in [19] which passes many non-trivial tests but we will
not need this here. The only fact we will use is that the dressing factor does not cancel the
S-matrix pole which appears in (13) when ϕ(pk) − ϕ(pj ) = i.

An obvious question is what happens to the Q-magnon bound states and their dispersion
law (8) described above when we move away from weak coupling. Our proposal is that they
survive for all values of the coupling and have the exact dispersion relation

εQ(p) = 8π2

λ

[√
Q2 +

λ

π2
sin2

(p

2

)
− Q

]
(15)

which is equivalent to (2). This formula clearly reduces to the dispersion relation (8) of
the Heisenberg spin chain at weak coupling. Setting Q = 1 we obtain the exact magnon
dispersion relation (12). For Q = 2, the proposed bound state should correspond to the pole
in the exact two-body S-matrix (13). Indeed, as above, the pole position should determine the
dispersion relation exactly. We will now verify this explicitly.

For magnon momenta p1 and p2 the new pole condition reads

1

2
cot

(p1

2

)√
1 +

λ

π2
sin2

(p1

2

)
− 1

2
cot

(p2

2

) √
1 +

λ

π2
sin2

(p2

2

)
= i (16)

as before we set

p1 = p

2
+ iv p2 = p

2
− iv

and solve for the bound-state momentum p = p1 + p2 as a function of v. After some
computation we obtain a sixth-order polynomial equation, P6(t) = 0, in t = cos(p/2) with
coefficients polynomial in exp(v) and a = λ/4π2. The polynomial P6(t) can be factored
exactly into the product of a quadratic P2(t) and a quartic P4(t) which are conveniently given
as

P2(t) = a(e2v − 1)2(1 + e2v − 2 evt)2 − 4 e2v(1 + 6 e2v + e4v − 4 evt − 4 e3vt)
(17)

P4(t) = a(1 + e2v − 2 evt)2(t2 − 1) + 4 ev(t + e2vt − ev(1 + t2)).

The physical root is singled out by its weak-coupling behaviour t = exp(v) needed for
agreement with the corresponding formula for the Heisenberg spin chain discussed above.
Taking the limit a → 0, one may easily check that the physical root belongs to the quartic
equation P4(t) = 0 rather than the quadratic.

The next step is to extract the physical root of the quartic P4(t) = 0, use it to eliminate v

in the energy formula

ε2(p) = ε(p1) + ε(p2)

= 8π2

λ

[√
1 +

λ

π2
sin2

(p

4
+ i

v

2

)
+

√
1 +

λ

π2
sin2

(p

4
− i

v

2

)
− 2

]

3 In fact the S-matrix factors corresponding to the two SU(2|2) subgroups each have a single pole leading to a double
pole in their product (see equation (40) of [8]). Thus, the undetermined overall phase factor should have a simple
zero to obtain the expected simple pole in the complete S-matrix. The author thanks Juan Maldacena for clarifying
this point.
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and compare with the predicted dispersion relation (15) for the Q = 2 case. A necessary and
sufficient condition for agreement with (15) is that the physical root of the quartic should also
obey the corresponding energy conservation equation√

1 +
λ

π2
sin2

(p

4
+ i

v

2

)
+

√
1 +

λ

π2
sin2

(p

4
− i

v

2

)
=

√
4 +

λ

π2
sin2

(p

2

)
. (18)

Squaring this equation twice and rewriting it in terms of t = cos(p/2), exp(v) and a = λ/4π2

we obtain the same quartic equation P4(t) = 0, with P4 as in (17) and we are done. As for the
Heisenberg spin chain, the multi-particle S-matrix has a pole corresponding to a Q-magnon
bound state for each Q when condition (11) is satisfied. In principle, we could check our
proposed dispersion relation (15) for Q > 2 by solving this condition, but we will not pursue
this here.

The magnon bound states described above correspond to string theory states4 with energy,
momentum and angular momenta related as

� − J1 =
√

J 2
2 +

λ

π2
sin2

(p

2

)
. (19)

For p = 0, the bound state saturates the familiar BPS bound, � � J1+J2, of the full SU(2, 2|4)

superalgebra. For non-zero momentum the state appears to lie above the bound. However, as
explained in [6], this is not the case because the magnon momentum can appear as a central
extension of the supersymmetry algebra which modifies the BPS bound. Indeed formula (19)
appears to be precisely the relevant BPS condition for all values of J2, generalizing the single
magnon result of [6]. For this reason it seems likely that all the magnon bound states discussed
above give rise to similar small representations of supersymmetry as the elementary magnon.

To test the proposed spectrum of bound states further we will now go to the regime of
fixed large ’t Hooft coupling, λ � 1 and look for the corresponding states in semiclassical
string theory. The HM limit is one where the energy, �, of the string state and one of its
angular momenta J1 both go to infinity with the difference � − J1 (and λ) held fixed. As
in the spin chain, this thermodynamic limit is taken holding the momenta and other quantum
numbers of individual world-sheet excitations fixed.

In [6] the above limit was taken for strings moving on an R × S2 subspace of AdS5 × S5

carrying a single non-zero angular momentum J1. Classical solutions were presented
corresponding to magnons of arbitrary momentum. In general the solutions correspond to
folded strings with endpoints on the equator of S2. One particularly simple case is that of
momentum p = ±π where the dispersion relation (1) corresponds to a stationary particle on
the string. A consistent state in closed string theory can be built by taking two such magnons
with momenta p = ±π . This corresponds to a special case of the folded spinning string
solution of Gubser, Klebanov and Polyakov (GKP) [20]. In this limit, the string rotates around
the north pole on S2 with its endpoints moving around the equator at the speed of light. The
classical energy of this state is infinite as is its angular momentum, but the difference �−J1 is
finite and equal to 2

√
λ/π . This matches the expected energy of the two-magnon configuration

described above.
In the following we will study a simple generalization of this case with two non-zero

angular momenta J1 and J2. Our starting point is the two-spin generalization of the GKP
solution first presented in [21]. This corresponds to a string moving on an R × S3 subspace of

4 More precisely, to obtain an allowed state of the closed string we should consider two or more excitations with
total momenta equal to zero. As mentioned in [6], the central charge vanishes on such multiparticle states and so they
cannot be BPS. However the exact energies of these states in the HM limit are simply the sum of the energies of their
constituent magnons which are almost free in this limit.
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AdS5 × S5. String motion is described by a four-component vector �X(σ, τ) =
(X1, X2, X3, X4) of unit length, | �X|2 = 1 which specifies a point on S3 ⊂ S5. The
additional time coordinate is eliminated with the static gauge condition X0 = κτ . The
relevant configuration, which corresponds to a genus-two finite gap solution of the SU(2)

principal chiral model, can be found using the ansatz

X1 + iX2 = x1(σ ) exp(iω1τ) X3 + iX4 = x2(σ ) exp(iω2τ)

with x1(σ )2 + x2(σ )2 = 1. The string has energy � = √
λκ and conserved angular momenta

J1 =
√

λω1

∫ 2π

0

dσ

2π
x1(σ )2 J2 =

√
λω2

∫ 2π

0

dσ

2π
x2(σ )2. (20)

The solution corresponding to a folded spinning string is [21, 22]

x1 = k sn(Aσ, k) x2 = dn(Aσ, k) (21)

with

A =
√

ω2
1 − ω2

2 k =
√

κ2 − ω2
2

ω2
1 − ω2

2

� 1. (22)

The Jacobian elliptic functions sn and dn are defined according to the conventions of [23].
The closed string boundary condition σ ∼ σ + 2π yields the relation

A = 2

π
K(k). (23)

Evaluating the angular momenta on this solution we obtain

J1 =
√

λω1

[
1 − E(k)

K(k)

]
J2 =

√
λω2

E(k)

K(k)
, (24)

where K and E are complete elliptic integrals.
It is convenient to introduce the variable ρ = ω2/ω1 < 1.

� = 2
√

λ

π

√
ρ2 + k2(1 − ρ2)√

1 − ρ2
K(k)

J1 = 2
√

λ

π

1√
1 − ρ2

(K(k) − E(k)) (25)

J2 = 2
√

λ

π

ρ√
1 − ρ2

E(k).

We will now consider a limit of the HM type where � → ∞ and J1 → ∞ with the
difference � − J1 held fixed. We will also hold the parameter ρ fixed. To this end we take
k → 1 so that

K(k) 
 − 1
2 log(1 − k) → ∞

and E(k) → 1. In the limit we find the formulae

� − J1 = 2
√

λ

π

1√
1 − ρ2

J2 = 2
√

λ

π

ρ√
1 − ρ2

. (26)

This corresponds a one-parameter generalization of the limiting GKP solution considered in
[6], the latter being the special case ρ = 0. Eliminating the remaining parameter ρ, we obtain
the relation

� − J1 = 2

√(
J2

2

)2

+
λ

π2
. (27)
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As the folded string configuration is symmetric it is natural to interpret this state as consisting
of two excitations each carrying half the total transverse angular momentum J2. As before the
two states have momenta p = ±π . If we identify each of these excitations as bound states
of J2/2 magnons, where J2 ∼ √

λ then the result (27) agrees with the expected total energy
calculated using the proposed dispersion relation (2).
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